

Suivi de population ? Des méthodes à leurs mises en œuvre

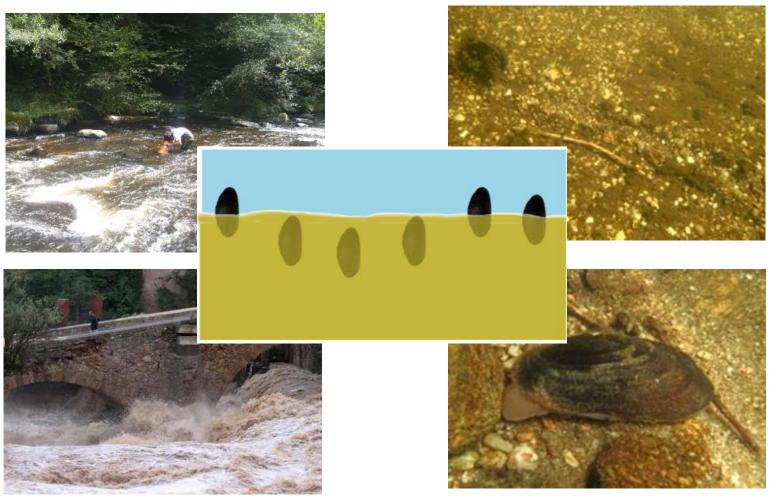
Intervention réalisée avec le soutien de la DDT 19 et de la DDT 87

Des tests méthodologiques :

Sous couvert d'une autorisation préfectorale

- Inventaire classique au bathyscope (comptage de ce que l'on observe), plus relevé de variables diverses
- Comptage répété sur un échantillonnage aléatoire (3 passages sur 51 sites de 400 m², en passant 5s./m²), puis estimation par modèle mixte d'abondance sous « Présence © », plus relevé de variables diverses
- Capture Marquage Recapture « virtuelle » (2 à 6 passages sur 22 sites entre 100 et 200 m², avec 2 efforts de prospection 5 et 15 s./m²), puis estimation sous « Mark ©», plus relevé de variables diverses

Analyses et comparaison



Une espèce difficile à suivre....

Modèle Mixte d'abondance (3 passages sur 51 sites de 400m²) :

Détecter l'espèce sur un site de 400 m²

- ➤ En 1 unique passage, on détecte l'espèce sur 6 sites sur 10 (+/-1)
- > 100% des sites sont occupés, même si en répétant 3 passages on ne la détecte que sur 80% d'entre eux

Dénombrer les individus

- ➤ En 1 passage, on observe 0 à 20% des individus
- La détectabilité moyenne sur l'étude est de 16 %
- > 95% de probabilité d'avoir 3 à 4 individus lorsque l'on en voit aucun

Avantages de la modélisation

Prise en compte de l'enfouissement, estimation représentative de l'ensemble de la zone d'étude (15 km)

CMR virtuelle sur 3 rivières (Vienne, Dronne et Méouzette) :

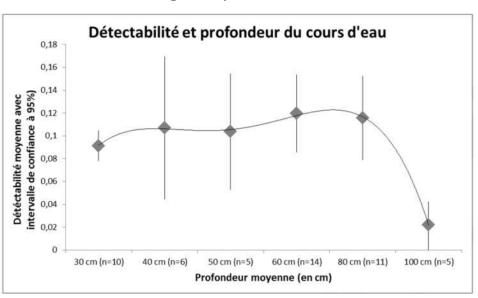
Détectabilité

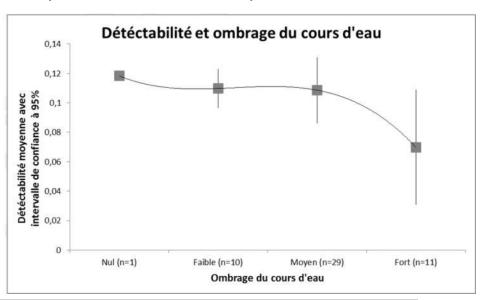
> Détectabilité globalement assez homogène : 33% en moyenne sur les 3 CE.

Dénombrer les individus

- ➤ En 1 passage, on observe entre 0 et 78 % des individus selon les sites et les observateurs
- 3 à 4 passages répétés permettent d'observer 68 % des individus

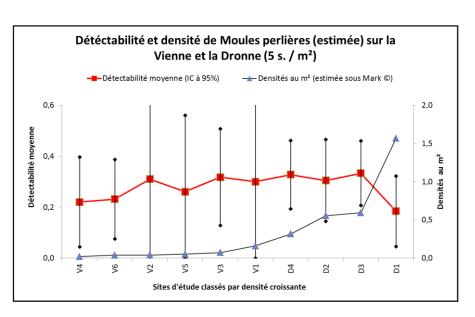
		Nb. d'inds. vus	Abondance	Taux de		
Protocoles	Largeur du CE	par cumul des	estimée (sous	capture		
		passages	Mark ©)	global		
n° 1 (5 coc / m²)	20 ML (Vienne)	112	154	75 %		
n° 1 (5 sec. / m²)	zo ivit (vienne)	113	(128 - 243)	(72 - 78)		
n° 1 /5 and / m²)	10 M/ (Duanna)	275	400	79%		
n° 1 (5 sec. / m²)	10 ML (Dronne)	275	(310 - 669)	(59 - 89)		
n° 2 (15 sec. / m²)	5 ML	454	699	66%		
n 2 (15 sec. / m ⁻)	(Méouzette)	454	(465 - 1398)	(58 - 73)		

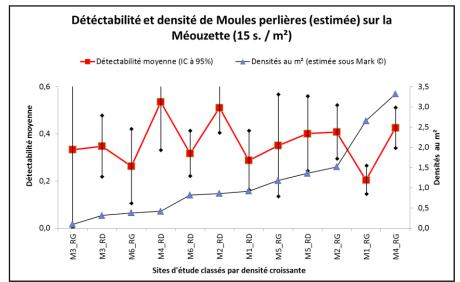




Quelles variables influent sur la détectabilité :

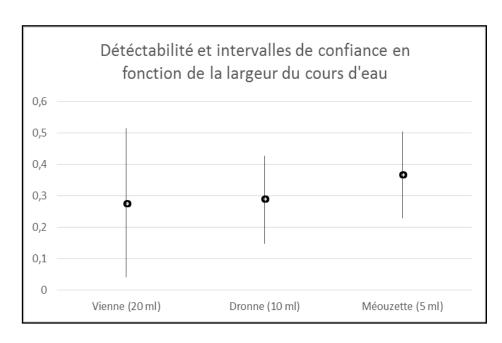
Ombrage et profondeur font chuté notre capacité à détecter l'espèce :

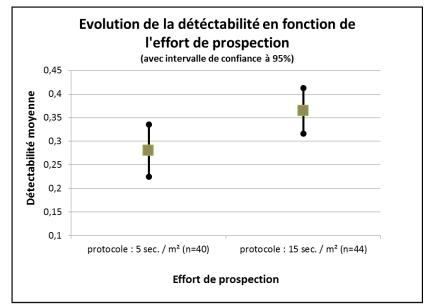




Quelles variables influent sur la détectabilité :

Faibles (<0,1 ind/m²) et fortes (>1,5 inds/m²) densités font chuter notre capacité à détecter l'espèce :



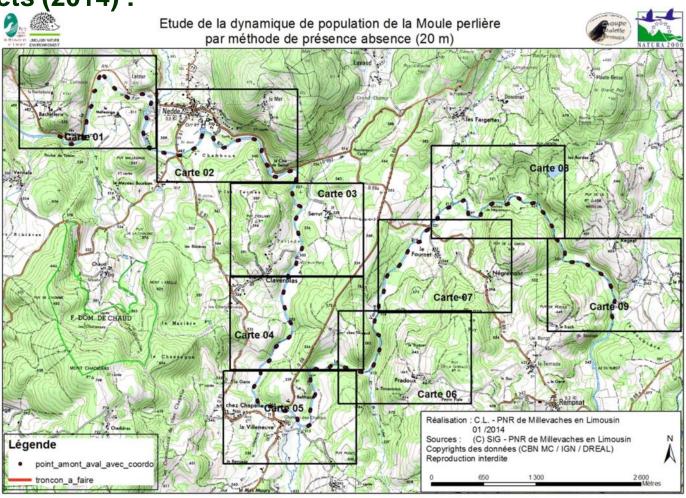


Quelles variables influent sur la détectabilité :

- Plus la rivière est large (5 10 20 ml), plus la détectabilité est variable (intervalle de confiance large)
- Tripler l'effort de prospection (5 ou 15 s/m²) permet d'augmenter notre capacité à détecter l'espèce de 8 % (seulement !) :

En conclusion:

- Pour un dénombrement correct, des comptages multiples sont une base incontournable
- On peut se permettre de prospecter « rapidement » sur de petits cours d'eau
- Les cours d'eau larges nécessitent un effort accru au mètre carré, et donc de la méthode
- Un effort accru peut également être mis en œuvre sur les secteurs très ombragés et / ou profond
- ➤ Dans tous les cas, une prospection par passage unique est très incertaine, à n'utiliser idéalement que pour du présence / absence (non valable pour de très faibles densités (<0,1 ind/m²)



Aux suivis concrets (2014):

- Suivi de hot Spot
- Rivière Vienne
- 2014 -2020 (?)
- Estimation modélisée

Modèle Royle biométric - Repeated Count Data, 2004

K = 200 (abondance max.)

"Goodness-of-fit test" négatif

Bayesien : effet aléatoire sur l'abondance et la detection (Loi normale)

Nb ind

(aout

2014)

0

35

51

Max d'obs

au cours

des 3

passages

0

35

AIC = 1291.6

Taux d'occupation apparent : 0.8039

Abondance totale apparente: 321 (vivants)

Taux d'occupation estimée (psi): 0.9999

Mean

(Densité

estimée au

m²)

0,009

0,727

1.820

Mean

abondance

estimée)

3

291

728

Taux

detectabilité

0,00%

12,04%

8,79%

Occupancy estimate (psi) std.err 95% confidence interval

2.5%

0

40

75

0

88

207

psi (site): 0.9999 0.00000.9999 - 0.9999

Abondance totale estimée (N): 2974 individus (vivants)

Standard

dev.

7,27

340,18

865,56

95% confidence interval Tot. Abund. estimate

N (site): 2974 455 - 14040

			. ,	,		_,	,					()	ı
			total N		2974	0,146	3366,55	455	950	1792	3575	14040	_
			alpha.lam		2,5367		0,86	1,195	1,859	2,436	3,112	4,44	
			beta		-2,1404		1,00	-4,229	-2,839	-2,1	-1,382	-0,404	
			mean.N		58,3093		66,01	8,922	18,63	35,14	70.1	275.3	

ID site

N[18]

N[49]

N[12]

Suivi à relancer en 2020 ?

Nb ind

(juin

2014)

0

15

53

Code

tronçon

230

120

290

Nb ind

passage 1 passage 2 passage 3

(juillet

2014

0

17

beta		-2,1404	1,00	-4,229	-2,839	-2,1	-1,382	-0,404	1,02
mean.N		58,3093	66,01	8,922	18,63	35,14	70,1	275,3	1,02
mean.det	15,57%	0,1557	0,12	0,0159	0,0619	0,1231	0,2277	0,426	1,02
sd.lam		1,5814	0,24	1,165	1,413	1,562	1,729	2,11	1,00
sd.p		0,7146	0,32	0,3262	0,5024	0,6312	0,8342	1,578	1,00
fit		86,5031	20,86	44,6	72,49	87,63	100,9	125,6	1,00
deviance		425,2300	36,55	333,1	407,7	432,5	450,2	479	1,00

25,0% | 50,0% | 75,0% | 97.5%

4

346

878

22

1356

3395

1

171

429

Rhat

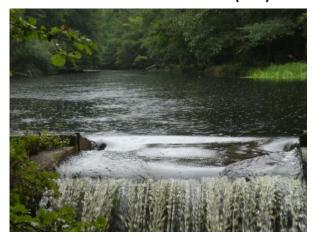
1,10

1,02

1,02

1,02

1,01



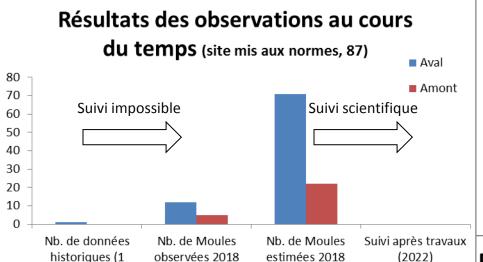
Aux suivis concrets (2018):

Mise aux normes (87)

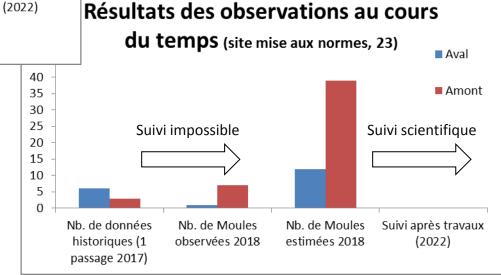
8 et 9 novembre 2018 Séminaire Natura 2000 Nouvelle Aquitaine

> Effacement de seuil (23)

Cyril LABORDE c.laborde@oxalis-scop.org 06 67 24 50 30



passage partiel 2015)



Protocole standardisé

Estimation modélisée

